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Overview

Simulation Real World Abstract: Reinforcement Learning is a promising tool for learning complex policies
even in fast-moving and object-interactive domains where human teleoperation or
hard-coded policies might fail. To effectively reflect this challenging category of tasks,
we infroduce a dynamic, intferactive RL testbed based on robot air hockey. By
augmenting air hockey with a large tamily of tasks ranging from easy tasks like
reaching, to challenging ones like pushing a block by hitting it with a puck, as well as
goal-based and human-interactive tasks, our testbed allows a varied assessment of RL
capabillities. The robot air hockey testbed also supports sim-to-real transfer with three
domains: two simulators of increasing fidelity and a real roboft system. Using a dataset
of demonstration data gathered through two teleoperation systems: a virfualized
control environment, and human shadowing, we assess the testbed with behavior
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Real Environment

Unlike the simulators, the real world must contend with occlusions, 0 Mouse-Teleop
control frequency limits and URS emergency stopping when taking

M.m.c B sfrong hard actions. Furthermore, the friction, collision and other
60Hz san 480 dynamics are unknown. Directly transferring a policy from the

uuuuuu * simulators to the real robot is thus not possible, opening the possibility
Teleop control

— for future work in sim-to-real tfransfer.
Learned policy
Action (task space) On the real roboft, we provide two teleoperation methods: mouse and

RTDE Controller human teleoperation 1o generate a dataset of 800 trajectories

gathered from 8 participants of varying skill. Data can be easily

| generated because of efficient replacing The juggling task require fine

AT l"é\% grain conftrol that is challenging for human demonstrators—while able
to hit the puck at least once, can struggle to achieve multiple hits.
Human demonstrates are only able to juggle the puck (perform 4 or
more consecutive hits) 30% of the time.

Tasks:
Reach, Touch, Hit

Action (Joint force)

Evaluation
Environment  Method Robot Air Hockey Tasks Overall, online RL perfOrmS the best among the baselines in
Reach Reach V. Touch  Strike  Strike Crowd Juggle Puck V. Block  Hit Goal Hit Goal V. SimL.Jl(]ﬂOﬂ, ShOWiﬂg fhat online interactions are crucial for .
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B¢ 99 08 08 ' - 06 006 : 0.1 - world is infeasible both in sample efficiency, and random jitter
Robosuite [18] & | T 10 o : 05 09 : 0 : is ineffective on a robot arm. However, offline RL notably

BC 0.9 01 03 _ ] _ o1 _ _ _ pu’rperfqrms behavior c;loning, which sugges’rs that dynomic,
Real World QL | 10 0.0 06 - : - 0.3 : : : interactive fasks benefit from a reward signal to learn fine-

Human | 1.0 0.0 1.0 : : 0.3 1.0 : : : grained control behaviors like hitfing a moving puck.
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